عرض مشاركة واحدة
  #83  
قديم 04-09-2010, 10:11 PM
kuber kuber غير متصل
 
تاريخ التسجيل: Aug 2009
المشاركات: 309
معدل تقييم المستوى: 15
kuber is on a distinguished road
رد: الموسوعة العلمية الشاملة

الحركة التذبذبية والتوافقية البسيطة

1 ـ الحركة التذبذبية Oscillatory Mtion:
الحركة التذبذبية: نمط من أنماط الحركة يتحرك فيها الجسم حول موضع سكونه، بحيث تكرر نفسها عدداً من المرات، في فترات زمنية متساوية.
والذبذبة الكاملة: الحركة التي يعملها الجسم المتذبذب في الفترة الزمنية بين مروره بنقطة معينة في مسار حركته مرتين متتاليتين.
وتسمى أكبر إزاحة للجسم المهتز من موضع سكونه اتساع الحركة التذبذبية ، كما يسمى الزمن اللازم لإتمام ذبابة كاملة الزمن الدوري. كما يسمى عدد الذبذبات الكاملة التي يتمها الجسم خلال وحدة الزمن بتردد الجسم.
التردد (ت د)= عدد الذبذبات الكاملة التي ينجزها الجسم / الزمن المستغرق في إتمامها ذبذبة/ث أو هيرتز.
الزمن الدوري = الزمن المستغرق في إتمام عدد معين من الذبذبات / عدد الذبذبات المنجزة 2 ـ الحركة التوافقية البسيطة Simple Harmonic Motion:
ومن الأمثلة على الحركة التوافقية البسيطة ما يأتي:
ـ حركة كتلة معلقة بطرف نابض (حركة أفقية أو رأسيّة).
ـ الحركة التذبذبية لفرعي شوكة رنانة.
ـ الحركة التذبذبية لوتر.
ـ الحركة التذبذبية لدقائق الوسط الناقل للموجات الميكانيكية.
ـ الحركة التذبذبية للإلكترونات في سلك يسري فيه تيار كهربائي متناوب.
وبصورة عامة تنشأ الحركة التوافقية البسيطة بفعل قوة تؤثر في الجسم، وتتناسب طردياً مع الإزاحة التي تحدث للجسم عن موضع سكونه، ويكون اتجاه القوة في عكس اتجاه الإزاحة دائماً كما في الشكل، أي أن: ق ر= ث؟س وتسمى هذه القوة بالقوة المعيدة (أو المرجعة) (Restoring force) لأنها تحاول إرجاع النابض لوضعه الأصلي. ومن شأن هذه القوة أن تحرك الجسم (جيئة وذهاباً)، كما هو الحال في الرقّاص (البندول) أو في جسم مربوط بنابض.
الحركة التوافقية البسيطة: الحركة التذبذبية التي تتناسب فيها القوة المعيدة تناسباً طردياً مع الإزاحة الحادثة للجسم المهتز وفي اتجاه معاكس لها.

تاريخ اكتشاف الذرة





تحويلات لورنتز

لقد تعرض العالم الهولندي هـ.أ. لورنتز *، أثناء قيامه بإجراء بعض التطبيقات على معادلات ماكسويل الخاصة بالمجال الكهرومغنطيسي *، تعرّض لمشكلة أساسية تتعلق بالعلاقات الرياضية بين القياسات الخاصة بالمكان والزمان التي يجريها كل من مشاهدَيْن يحتركان بسرعة نسبية منتظمة عندما يرصدان نفس الحادثة. فقد وجد لورنتز أنه لو كان لدينا مشاهدان أ، ب مثلاً فإن المشاهد أ يعين أية حادثة «د» تقع تحت إدراكه بأربع كميات: (س، ص، ع) مثلاً لتعيين مكانها بالنسبة لمجموعة متعامدة من المحاور (م س، م ص، مع) . ثم يعين زمان حدوث الحادثة وليكن ن. وبذلك تتعين الحادثة تماماً حسب قياسات المشاهد أ على الصورة: د[(سَ، صَ، عَ)، ن]كذلك المشاهد الآخر ب عندما يرصد أية حادثة «دَ» تقع تحت إدراكه، فإنه يعينها هو الآخر بأربع كميات خاصة به هو: (سَ، صَ، عَ) بالنسبة لمجموعة من المحاور المتعامدة (مَ سَ، مَ صَ، مَ عَ) لتعيين مكانها، نَ لتعيين لحظة حدوثها. أي أن دَ[(سَ، صَ، عَ)، نَ]والمشكلة تنشأ عندما يرصد المشاهدان أ، ب نفس الحادثة، أي عندما د = دَ، وكان المشاهد ب مثلاً يتحرك بسرعة منتظمة ى بالنسبة للمشاهد أ. والسؤال المطروح في هذه الحالة: ما هي العلاقات التي تربط الكميات الأربع التي تعين الحادثة د بالكميات الأربع التي تعين الحادثة دَ؟ بمعنى أنه لو عرفت إحدى المجموعتين فإنه يمكن تعيين المجموعة الأخرى. ولتيسير الإجابة نفرض أنه عند بدء الزمن، أي عندما ن = نَ= صفر كان المشاهدان معا وكانت محاورهما متطابقة. ولنفرض أن سرعتهما النسبية ى في اتجاه م س. في هذه الحالة تكون العلاقات المطلوبة، حسب قواعد الميكانيكا

النيوتونية هي:
سَ = س ـ ى ن، صَ = ص، عَ = ع، نَ = ن إلا أن لورنتز عندما تصدى لهذه المشكلة عام 1896 رفض استخدام هذه العلاقات على الصورة السابقة، إذ أنها لا تؤدى إلى محافظة معادلات ماكسويل على صورتها عند تحويلها بموجب هذه العلاقات من مجموعة المشاهد ب إلى مجموعة المشاهد أ. وقد تمكن لورنتز من استنباط الصورة التي يجب أن تكون عليها هذه العلاقات كي تحافظ على صورة معادلات ماكسويل، ووجد أنها سَ = B (س ـ ى ن)، صَ = ص، عَ = ع، نَ = B (ن ـ ى/ج 2 س)
حيث B = 1/؟ 1 ـ ى 2/ج 2، ج هي سرعة الضوء وسميت هذه العلاقات باسم «تحويلات لورنتز»، كما سميت المجموعة الأولى باسم «تحويلات جاليليو». ويلاحظ أن تحويلات لورنتز تؤول إلى تحويلات جاليليو عندما تكون السرعة النسبية للمشاهدين ى صغيرة بالنسبة لسرعة الضوء ج بحيث يمكن إهمال الكمية ى 2/ج 2. وقد تمكن أينشتين عام 1905 من اشتقاق تحويلات لورنتز مستنداً فقط على الفرضين الأساسيين للنسبية الخاصة *.

تغير الكتلة مع السرعة

في ميكانيكا النسبية الخاصة *. ثبت أن كتلة الجسم المتحرك تتغير تبعا لسرعته فتزداد بازدياد تلك السرعة. وبصورة أدق، إذا تحرك جسم بسرعة منتظمة ع بالنسبة لمشاهد ما، فإن كتلة الجسم ك بالنسبة لهذا المشاهد تحقق العلاقة:
ك = ك/1 ـ ع 2/ج 2 حيث ج هي سرعة الضوء.
ومن هذه العلاقة يتضح أن ك = ك. عندما ع = صفر. أي أن ك. هي كتلة الجسم عندما يكون ساكناً بالنسبة للمشاهد ويطلق عليها اسم «الكتلة الفعلية للجسم» * (proper mass)، كما تسمى أيضاً «بكتلة السكون» * (rest mass) .
ومن أهم نتائج هذه العلاقة والتي لم تكن معروفة في الميكانيكا النيوتونية *، أنه أمكن إيجاد علاقة مباشرة بين الكتلة والطاقة لجسم متحرك[انظر: العلاقة بين الكتلة والطاقة].
وقد ارتبط بهذه العلاقة مفهوم خاطىء وهو أنه عندما تزداد سرعة الجسم ع بحيث تصبح مساوية لسرعة الضوء أي عندما ع = ج فإن كتلة الجسم ك تصبح لا نهائية في الكبر. وهذا الاستنتاج غير صحيح إذ أنه في حالة «الفوتون» * وهو الجسم الذي يتحرك بسرعة الضوء تكون سرعة السكون ك. مساوية للصفر. وحسب العلاقة السابقة تصبح كتلة الفوتون ك = صفر/صفر، وهذه كمية غير معينة رياضياً.

تناقض الساعة

بعد ظهور النظرية النسبية الخاصة * التي وضعها إلبرت أينشتين عام 1905 ظهرت عدة تناقضات ظاهرية فيما يتعلق بنتائج هذه النظرية. ومن أهم هذه التناقضات تناقض إرنست *، وتناقض الساعة. والغريب أن أينشتين نفسه هو أول من كتب عن التناقض الأخير عام 1905 م، ثم عاد وكتب عنه ثانية عام 1911، ولم يقم بأية محاولة لتفسير ما يشوبه من لبس أو غموض.
ويتلخص هذا التناقض في أننا لو عتبرنا مشاهدين أ، ب يجلسان معاً وكل منهما معه ساعة لتحديد الوقت، والساعتان متطابقتان تماماً. ثم تحرك أحدهما وليكن ب بسرعة منتظمة مبتعداً عن زميله، الذي ظل ساكناً، في رحلة طويلة ثم ارتد عائداً إلى زميله أ. وبحسب ظاهرة اتساع الفترات الزمنية * في النسبية الخاصة فإن تقدير المشاهد أ لزمن الرحلة يكون أكبر من تقدير ب له. إذ أن المشاهد أ يخيل إليه أن الساعة التي يحملها زميله ب المتحرك بالنسبة إليه تؤخر. وحيث أن المسألة في الحركة النسبية متماثلة تماماً. أي أنه يمكن اعتبار أن المشاهد أ هو الذي تحرك في الاتجاه المضاد لحركة ب، بينما ترك زميله ساكناً. وحيث أن أ يحمل الآن الساعة المتحركة والتي تظهر للمشاهد ب كما لو كانت تؤخر. فإنه في هذه الحالة يكون تقدير ب لزمن الرحلة أكبر من تقدير أ لها، وبذلك يكون هناك تناقض بين النتيجتين. وقد ثبت بعد ذلك أن هذا التناقض ظاهري، إذ أنه لكي يرتد أي من المشاهدين عائداً لزميله فيجب أن يقف أولاً ثم يرتد بنفس السرعة، وهذا يقتضى تأثير قوة خارجية لتوقف الجسم ثم بعد ذلك تكسبه سرعة مساوية في الاتجاه المضاد. وهذا لا يدخل في نطاق النسبية الخاصة لأنها قاصرة على حركة المشاهدين بسرعة منتظمة وبدون عجلة. وذلك يدخل في نطاق النظرية النسبية العامة *. وقد تم حل هذه المسألة حلا كاملاً في نطاق النسبية العامة عام (1952) .

تواريخ مهمة في الفيزياء

القرن الرابع قبل الميلادقدم أرسطو نظريات في مجالات عديدة من الفيزياء
القرن الثالث قبل الميلاداكتسف أرخميدس قانون العتلة وقوانين تتعلق بسلوك السوائل
القرن الثاني الميلاديتصور بطليموس أن الأرض ساكنة تدور حولها النجوم والكواكب والشمس والقمر
1017 م اخترع البيروني أول جهاز لقياس كثافة المواد
1020 م وضع العالم العربي ابن الهيثم أساس علم البصريات في عدة كتب فيزيائية مهمة مثل كتاب المناظر الذي درس فيه الضوء وانكساراته وطبيعة الإبصار وتشريح العين
1135 م أجرى الخازن أولى التجارب لإيجاد العلاقة بين وزن الهواء وكثافته
1270 م أجرى روجر بيكون دراسات في البصريات
1543 م نشر نيكولاس كوبرنيكوس نظريته بأن الأرض والكواكب تتحرك في مدارات دائرية حول الشمس
1600 م اكتشف جاليليو قوانين مهمة في حقول فيزيائية كثيرة, بصفة خاصة في الميكانيكا
1687 م نشر نيوتن قوانينه للحركة
1690 م نشر كريستيان هايجنز نظرية موجية الضوء
1798 م ذكر بنيامين طومسون وكاونت رمفورد أن حركة الجسيمات خلال مادة تنتج حرارة
1801 م - 1803مأحيا توماس يونج النظرية الموجية للضوء
1803 م أعلن جون دالتون لأول مرة نظريته الذرية عن تركيب المادة
القرن التاسع عشر الميلاديأنتج مايكل فارادي وجوزيف هنريكل على حده الكهرباء من المغتطيسية
1847 م اكتشف جيمس جول أن الحرارة والطاقة يمكن أن يتحول كل منهما للآخر بمعدل ثابت
1864 م نشر جيمس كلارك ماكسويل نظريته الكهرومغنطيسية للضوء
1887 م أثبتت تجربة مايكلسون ومورليعدم وجود الأثير
1895 م اكتشف ويلهلم ك. رونتجن الأشعة السينية
1896 م اكتشف أنطوان هنري بكويريل الإشعاع الطبيعي
1898 م استخلصت ماري كوري وزوجها بييرعنصر الراديوم المشع
1900 م نشر ماكس بلانك نظريته الكمية
1905 م نشرأينشتاين نظريته النسبية الخاصة مزلزلاً أركان التصور النيوتوني للكون
1911 - 1913 م اقترح إرنست رذرفورد ونيلز بورنماذج على شكل نظام كوكبي للذرة
1915 م أعلن أينشتاين نظريته النسبية العامة
1924 م قدم لوي دي بروغلي النظرية الموجبة للإلكترون
1925م - 1926مطور كل من إيرفين شرودينجر وفرنر هيسينبرج, كل على حده, نظماً لتنسيق الفيزياء الكمية.
1930 م تنبأ بول ديراكب وجود البوزيترون وهو إلكترون موجب الشحنة
1931 م أنشأ السير جون كوكروفت وأرنست والتنأول معجل جسيمات
1932 م اكتشف جايمس شادويك وجود جسيمات متعادلة في نواة الذرة، أطلق عليها فيما بعد النيوترونات
1938 م تمكن أوتو هان وفرتز ستراسمانمن شطر ذرة اليورانيوم
1942 م حقق إنريكو فيرمي وزملاؤه أول تفاعل نووي متحكم فيه
1945 م أول تفجير لقنبلة ذرية في نيومكسيكو، تبعه إلقاء قنبلتين في نفس السنة على اليابان
1947 م اخترع جون باردين ووالتر. براتين وويليام شوكلي الترانزستور
1960م صنع ثيودور ميمان أول ليزر
1964 م اقتراح موري جل - مان وجورج زفايجوجود جسيمات الكوارك جسيمات أساسية
1974 م اكتشف بيرتون ريختر وصمويل. سي. سي.تنج نوعاً من الجسيمات تحت الذرية سمي بجسيم إبساي أو جسيم جي
1983 م اكتشف باحثون تحت قيادة كارلو روبيا ثلاثة جسيمات تحت ذرية, هي جسيمات +w و -w و z?
1995 م إكتشف العلماء في مختبر فرمي الجسيم تحت الذري الكوارك فوقي
2000 م إكتشف العلماء في مختبر فرمي جسيماً تحت ذري سمي تاو نيوترينو

حوادث المفاعلات النووية

حتى 21 ديسمبر 1990 كان هناك 423 مفاعلاً نوويا تعمل في 24 بلداً على نطاق العالم. منها 112 مفاعلاً في الولايات المتحدة. وتقع «الحوادث الروتينية» التي يشار إليها بالأحداث غير العادية من وقت لآخر أثناء تشغيل هذه المفاعلات. وقد صنفت الوكالة الدولية للطاقة الذرية هذه «الأحداث غير العادية» على أنها أحداث لا تتعلق بالسلامة (بمتوسط تكرار 5ر0 إلى حدث/أسبوع/مفاعل)، وأحداث متعلقة بالسلامة (5ر0 حدث/شهر/مفاعل)، وأحداث ذات إضرار بالسلامة (5ر0 إلى 1 حدث/سنة/مفاعل) وخلال الفترة من 1970 ـ 1990 أدى كثير من اوحداث غير العادية إلى إغلاق المفاعلات. فعلى سبيل المثال كان هناك 195 حادثاً في الولايات المتحدة في الفترة ما بين مايو وسبتمبر 1984 فقط. وبصفة عامة لم تسفر حالات الاغلاق هذه وأمثالها عن انطلاق إشعاعات في البيئة مع أن قليلاً منها أدى إلى تلوث بعض العاملين أو المناطق المحصورة حول المعامل.
وبالرغم من الاجراءات والاحتياطات المعقدة التي تتخذ لمنع وقوع حادث كبير، وقعت عدة حوادث، كان أهمها حادث ثرى مايل أيلاند بالولايات المتحدة عام 1979، وحادث تشيرنوبيل باتحاد دول الكومنولث عام 1986 (انظر: مفاعل نووى) .
حادث ثرى مايل أيلاند: في الصباح الباكر من يوم 28 آذار/مارس 1979 أصيب المفاعل المبرد بالماء المضغوط الذي تصل قدرته إلى 880 ميجاواط في Three Mile Island Unit 2، الذي كان يعمل بكامل طاقته تقريباً، بتوقف التغذية العادية بالمياه مما أدى إلى تعطل التوربين ومن بعده توقّف المفاعل. وتبعاً لذلك حدثت سلسلة من الأحداث أدت نتيجتها إلى ضرر شديد في قلب المفاعل. ووصلت درجات الحرارة محلياً في قلب المفاعل إلى حد ذوبان الوقود.
وقد انطلقت في البيئة مواد انشطارية إشعاعية، تضمنت بشكل رئيسي، الغازات الخاملة (زينون ـ 133 وزينون ـ 135) ومقادير ضئيلة من اليود ـ 131. لم يقتل أحد نتيجة الحادث، ولم يكن هناك أثر ملحوظ للإشعاع على صحة الجمهور. وأدى الحادث إلى إجلاء نحو 22000 شخص من المناطق المحيطة بالموقع.
كارثة تشيرنوبيل: تقع محطة تشيرنوبيل للطاقة النووية، على بعد 130 كم شمال كييف، باتحاد دول الكومنولث،. وفي 26 أبريل 1986 في الساعة 1 و23 دقيقة صباحاً وقع انفجار في الوحدة رقم 4 بها ونتيجة للحادث حصل تفتت في الوقود، وانفجارات بخارية وهدروجينية، وارتفعت درجة حرارة المفاعل المحترق إلى عدة آلاف درجة مئوية مؤدياً إلى انصهار قلب المفاعل وانطلاق الإشعاعات من عناصر الوقود المدمرة خلال فترة 10 أيام.
وأدى الحادث إلى انطلاق كميات ضخمة من النويدات المشعة في الغلاف الجوى. وكان من بين هذه النويدات المهمة من الناحية الطبية الحيوية: سترنشيوم ـ 90 واليود ـ 131 والسيزيوم ـ 137.
وانتقلت المواد المشعة المنبعثة من تشيرنوبيل إلى مسافات بعيدة ووصلت إلى أماكن تبعد آلاف الكيلومترات عن مصدرها. فقد عبرت الحدود إلى بولندا وجنوب فنلندا السويد والنرويج. وإلى ألمانيا، واليونان وعبر الجمهوريات السوفياتية (سابقا) والبلدان الاسكندنافية والمملكة المتحدة.
تركز الاهتمام في بداية الأمر على اليود ـ 131 الذي تأكله الأبقار خلال رعيها ويظهر في ألبانها. كما تلوثت الخضر الورقية والفواكه المزروعة في الخارج مما أدى إلى التخلص منها. وقد اتخذت تدابير خاصة في اسكندنافيا والمملكة المتحدة للحد من نقل المواشي وذبحها.
ومع أن مجموع الوفيات نتيجة للحادث كان 31 شخصاً في البداية، فقد أعلنت حكومة اتحاد الجمهوريات الاشتراكية السوفياتية (سابقاً) أن جملة الوفيات تراوحت بين 250 و300 شخص بعد أربع سنوات من الحادث. وتوضح البيانات الطبية عن الفتترة 1986 ـ 1990، في منطقة المراقبة الدقيقة حول تشيرنوبيل، ارتفاعاً بنسبة 50 في المائة في متوسط تكرار الإصابة بأمراض الغدة الدرقية والأورام الخبيثة ونمو الأنسجة (وازداد سرطان الدم بنسبة 50 في المائة)، بالإضافة إلى زيادة خطيرة في حالات الإجهاض وولادة أطفال بتشوهات جينية.

خواص الدقائق الأساسية في الذرة
الجسيم
الكتلة.جرام
الكتلة.وك ذ
الشحنة النسبية
الشحنة الفعلية.كولوم

الإلكترون
9.109×10-28
0.00055
-1
-1.6×10-19

البروتون
1.673×10-24
1.00728
+1
+1.6×10-19

النيوترون
1.675×10-24
1.00867
صفر
-


طاقة الترابط النووي



هي الطاقة المساوية لمقدار الشغل اللازم إعطاؤه للنواة لتبتعد نوياتها بعضها عن بعض تماماً، وهي تكافىء النقص في كتلة نويات النواة.
حسابها: طاقة الترابط النووي = (مجموع كتل نويات النواة ـ كتلة النواة الفعلية) × 931,44 م.أ.ف كسر الترابط:
هو طاقة الربط للنوية الواحدة بالنواة.
كسر الترابط = طاقة الترابط النووي/رقم الكتلة منحنى كسر الترابط:
هو منحنى بياني يوضح العلاقة بين كسر ترابط نوى ذرات العناصر ورقم كتلتها.


ملاحظات:
1 ـ يمكن إيجاد كسر الترابط لنواة أي عنصر بمعلومية رقم كتلته وطاقة ترابطه النووي.
2 ـ أثبت النوى الخفيفة هي نواة الهيليوم ولهذا فإن أكثر النوى الخفيفة استقراراً هي التي لها رقم كتلة مضاعف لرقم 4 لأن النوى المستقرة تميل نوياتها لتكوين مجاميع من دقائق ألفا داخلها.
3 ـ النوى الخفيفة تكون مستقرة إذا احتوت على أعداد متساوية من البروتونات والنيوترونات حتى رقم كتله (40) . فمثلاً الأكسجين أ فيها عدد البروتونات = عدد النيوترونات ولذا فهي من النوى الخفيفة المستقرة.
4 ـ النوى التي لها رقم كتلة أكبر من (40) لضمان استقرارها فإنها تميل لزيادة عدد نيوتروناتها قليلاً عن عدد البروتونات للمساعدة هي تقليل قوة التنافر داخل النواة.

طاقة التفاعل النووي

هي الطاقة المكافئة للفرق بين مجموع كتل النوى الداخلة في التفاعل النووي والناتجة منه.
أ + ب = ح + ء = ط ويكون التفاعل ماصاً للطاقة إذا كان مجموع كتل النوى الناتجة أكبر من مجموع كتل النوى الداخلة في التفاعل.
ويكون مولداً للطاقة إذا كان مجموع كتل النوى الناتجة أقل من مجموع كتل النوى الداخلة في التفاعل.
والتفاعلات المولدة للطاقة تشمل الانشطار النووي والاندماج النووي.

طاقة الليزر

استعمل الليزر في سلسلة مدهشة من أوجه الاستعمال خلال حياته القصيرة: من إحداث ثقوب في الماس إلى إجراء عمليات دقيقة في العين، ومن قياس الفضاء بين القمر والأرض إلى كشف أصغر الحركات. ولا يبدو مستقبله أقل روعة، بما يبشرنا به من تلفيزيون ذي ثلاثة أبعاد وقوة نووية زهيدة الثمن. من الواضح إذن أن الليزر ليس مصدراً عادياً للضوء.

ما هو الليزر

الليزر النبضي هو، في الأساس، جهاز لخزن الطاقة ثم لاطلاقها دفعة واحدة وأحداث حزمة كثيفة جداً من الضوء. قلب الليزر بلورة أو أنبوب غاز أو سائل تضخ فيه الطاقة (1) . يتم ذلك عادة باحاطته بجهاز ينتج وميضاً قوياً من الضوء أو حزمة كثيفة من الموجات الاشعاعية أو الالكترونات.
أول ليزر نبضي أخترعه ثيودور هـ. ميمان عام 1960 وكان يحتوي على بلورة من ياقوت، ويحدث وميضاً قصيراً من الضوء الأحمر. أما اليوم، فالليزرات ذات الموجة المتواصلة تحدث حزماً متواصلة من الأضواء ذات الوان عدة، ومنها ما يطلق أشعة تحت الحمراء أو فوق البنفسجية.

نشاطات الفوتونات

يحث الذرات لاطلاق فوتوناتها وصول فوتونات أخرى، فينتج عن ذلك اشعاع ضوئي. للضوء المضخوخ في الليزر تواترات متنوعة، لكن الضوء المنطلق منه هو أشد بكثير وله تواتر واحد.
كل فوتون يسبب انفلات فوتون آخر، وهكذا تسير جميع الفوتونات معا محدثة موجات ضوئية متزامنة تماماً. يقال في هذه الحالة الضوء متوافق الطور أو منسجم (في الضوء العادي جميع الموجات متفاوتة الطور) . بما أن جميع الموجات متزامنة، فبعضها يقوي البعض الآخر، وهكذا يكون ضوء الليزر قوي التألق. أن الليزر مبني بحيث أنه لا يطلق إلا حزمة ضيقة جداً من الضوء تكاد لا تنتشر قط. فحتى في مسافة كمسافة القمر لا يتعدى عرض حزمة الليزر الموجهة من الأرض 3 كيلو مترات (3) . فالحزمة الضيقة من الضوء الحاد المنسجم تحتوي على كمية هائلة من الطاقة المركّزة، فإذا صوبت حزمة ليزر إلى نقطة واحدة من الفضاء بواسطة عدسة، فأنها تسخّن الهواء إلى حالة التوهج، فيشع نوراً ويقلي حرارة، كما بأمكانها أن تثقب صفيحة فولاذية.


أوجه استعمال أخرى لليزر:
يمكن استعمال حزم الليزر أيضاً لقياس المسافات والسرعات الكبيرة. فقد اطلقت حزمة ليزر نحو القمر لتعكسها إلى الأرض مرآة خاصة وضعها هناك ملاّحو أبولو، فتمكّنا بذلك من قياس دقيق جداً لبعد القمر. في علم الارصاد الجوية تستعمل حزم الليزر لكشف طبقات الهواء غير المرئية والحركات والغيوم، وهي مفيدة أيضاً في دراسات تلوث الهواء.
فضلاً عن ذلك، أن حرارة الليزرات المرتفعة تؤمّن لها أوجه استعمال عدة في الطب والصناعة. فإذا وجهت حزمة ليزر إلى داخل العين بقوة غير كافية لإيذاء العدسة، تجمعها العدسة على الشبكية فتلحم بدون ألم قطعة منفصلة عنها وتصحح النظر الضعيف (4) . باستطاعة حزم الليزر أيضاً أتن تذيب ناميات جلدية دون اجراء عمليات جراحية، وذلك بأطلاق الحزم على طول أنابيب ليفية بصرية تولج داخل الجسم بدون ألم. في الصناعة تفصّل بالليزر نماذج الآلات، وتثقب قطع من ألماس لتصبح قوالب لصنع الاسلاك الرفيعة، وتقص وتلحم القطع لصنع الدوائر الالكترونية الدقيقة (7) .
حتى الاتصال بواسطة حزم الليزر بدلاً من موجات الراديو أصبح من المرغوب فيه اليوم. لأن حزم الضوء تستطيع أن تحمل عدداً من أقنية الاتصال يفوق كثيراً ما تستطيع موجات الراديو حمله. يمكن أيضاً تقل المعلومات والاصوات والصور بواسطة حزمة ليزر تسير في مسار مغلق من نوع خاص لتحاشي فقدان شيء من قوتها عند مرورها خلال الضباب والسديم في الهواء.
من أغرب نتائج أحداث الضوء المنسجم في الليزرات نشوء الهولوغرافيا التي تمكّن من صنع صور ذات ثلاثة أبعاد (5 و6 و8) .
ثمّة مجال آخر يمكن أن يحدث فيه الليزر ثورة، هو الطاقة النووية. تجرى الآن بحوث لمعرفة ما إذا كان الانصهار النووي الحراري (التفاعل الذي يحصل في القنبلة الهيدروجينية وفي النجوم) يمكن بدؤه بواسطة الليزر بدلاً من تفريغ كهربائي قوي.

علماء الفيزياء والمال





فترة نصف عمر العنصر المشع



هي الفترة الزمنية التي تلزم لإنقاص عدد الذرات المشعة للعنصر إلى نصف قيمتها الابتدائية.
ملاحظة: تختلف فترة نصف العمر للنظير المشع باختلاف نوع العنصر، وقد وجد أنه كلما قلت فترة نصف عمر النظير المشع زادت شدة إشعاعه.

فروع الفيزياء

تتفرع الفيزياء إلى مجموعتين كبيرتين: الفيزياء التقليدية والفيزياء الحديثة, والاختلاف بينهما, في الدرجة الأولى, هو في الاهتمام والتركيز.
فالفيزياء التقليدية تعنى بالأسئلة حول الحركة والطاقة, وأقسامها خمسة:



الفيزياء الحديثة فتركز على دراسة التركيب الأساسي للعالم المادي, وتشمل حقولها الكبيرة:



فروع أخرى

الجيوفيزياء: هي دراسة الأرض وجوها ومياهها بوساطة مبادئ الفيزياء.
الفيزياء الحيوية: تطبق أدوات ووسائل الفيزياء لدراسة الأحياء والعمليات الحيوية.
الفيزياء الرياضية: هي دراسة النظم الرياضية التي تمثل الظواهر الطبيعية.
فيزياء الصحة: تتعلق بحماية الذين يعملون في مجال الإشعاع أو قريباً من الإشعاع.
فيزياء الكم: تشمل مجالات عديدة تبنى فيها الدراسة على النظرية الكمية, التي تعنى بالماء والإشعاع الكهرومغنطيسي وتفاعلاتهما.

فيزياء الجسيمات

فرع من فروع الفيزياء يدرس الجسيمات الذرية. وتشمل هذه الجسيمات تحت الذرية الأجزاء الأساسية الثلاثة للذرة وهي البروتونات موجبة الشحنة, والإلكترونات سالبة الشحنة, والنيوترونات المتعادلة كهربائياً. فالبروتونات والنيوترونات تكون نواة الذرة, بينما تدور الإلكترونات حول هذه النواة.
وهناك جسيمات كثيرة داخل النواة غير ثابتة وغير مرئية, وهذه الجسيمات تظهر قبيل انحلال (تفكك) الذرة إلى جسيمات أدق. وقد تفرعت فيزياء الجسيمات من الفيزياء النووية بعد أن اكتشف الباحثون هذه الجسيمات الدقيقة غير الثابتة. وأدى اكتشافهم هذا إلى ان البروتونات والنيوترونات تتكون من جسيمات أدق منها. ويجري فيزيائيو الجسيمات الأبحاث باستخدام أجهزة تسمى معجلات الجسيمات. وتستطيع هذه الأجهزة أن تدفع بالحسيمات تحت الذرية إلى سرعات عالية جداً. وعندما تبلغ سرعات هذه الجسيمات قيماً قريبة جداً من سرعة الضوء, يسمح لها بالتصادم مع المادة. ويدرس الفيزيائيون الشظايا التي تنتج من التصادمات ويقيسون طاقاتها. وبهذه الكيفية يأملون أن يفهموا كيف تترابط الجسيمات الأولية لتكون البروتونات والنيوترونات والجسيمات تحت الذرية الأخرى.
وفي بعض الأحيان تنتج الطاقة المنبعثة من التصادم جسيمات جديدة, يفنى معظمها في أقل من جزء من البليون من الثانية. ويتتبع علماء الفيزياء مسارات مثل هذه الجسيمات بطرق مختلفة:
ومن هذه الطرق تصوير الآثار التي تتركها الجسيمات أثناء مرورها خلال بعض المواد الشفافة. وهناك طريقة أخرى للتتبع تستخدم جهازاً يرسل إشارة كهربائية عندما يمر أي جسيم من خلاله, وتحول هذه الإشارة إلى حاسوب يعيد تركيب ممرات الجسيمات الناتجة عن التصادم.
ويسعى علماء فيزياء الجسيمات إلى التعرف على كل الجسيمات الأولية وإلى استنتاج نظرية رياضية عن سلوكها. كما يريدون أن يكتشفوا أصل الكتل التي تحملها الجسيمات المختلفة. فبعضهم يعتقد أن هذه الكتل تنتج عن فعل البوزونات التي تسمى بوزونات هيجز, غير أن وجود هذه البوزونات لم تتم برهنته بطريقة مباشرة حتى الآن.

فيزياء الحالة الصلبة

وتسمى أيضاً فيزياء المادة المكثفة.
يمكن تصنيف المواد الصلبة وفق الكيفية التي تتفاعل بها الإلكترونات والنوى في الذرات المختلفة. ويهتم الفيزيائيون الذين يدرسون المواد الصلبة بتأثر خصائص هذه المواد بعوامل مثل الحرارة والضغط. فبعض المواد الصلبة مثلاً, تفقد كل المقاومة الكهربائية عند الدرجات المنخفضة جداً, مما يجعلها تتحول إلى موصلات فائقة. وأبحاث التركيب الإلكتروني للمواد الصلبة ذات أهمية خاصة في فهم سلوك أشباه الموصلات التي هي أساس الأجهزة الإلكترونية الحديثة.

فيزياء الموائع والبلازما

فيزياء الموائع الحديثة مبينة على مبادئ ميكانيكا الموائع التقليدية. ويعتبر فهم سلوك وحركة الموائع أمراَ مهماَ لتصميم وصناعة السيارات والسفن والطائرات والصواريخ, كما هو مهم لدراسة الأحوال الجوية. أما فيزياء البلازما فتعنى بدراسة الغازات التي تسمى البلازما. فعندما تزيد طاقة الغاز على قدر معين يصبح الغاز مؤيناً, أي مكوناً من جسيمات مشحونة كهربائياً, لانفصال الجسيمات سالبة الشحنة عن الجسيمات موجبة الشحنة.
ويسمى هذا الغاز البلازما, ويستخدم في أضواء النيون وفي المصابيح الفلورية. ويدرس الفيزيائيون كيف يمكن التحكم في البلازما من أجل استخدامها لإنتاج طاقة الاندماج لتوليد الكهرباء.

قواعد وفوانين





قوانين الثبات للتفاعلات النووية

في أي تفاعل نووي يكون المقدار الكلي للطاقة ثابتاً. فأي نقص في الكتلة يتبعه انبعاث كمية مكافئة من الطاقة، وأي زيادة في الكتلة يتبعها امتصاص كمية مكافئة من الطاقة وذلك طبقاً لمعادلة آينشتين ط= ك× ع 2 ـ قانون بقاء كم الحركة:
في أي تفاعل نووي يظل كم الحركة ثابتاً.
بمعنى أن كتلة المواد الداخلة في التفاعل × سرعتها = كتلة المواد الناتجة من التفاعل × سرعتها.
3 ـ قانون بقاء الشحنة:
في أي تفاعل نووي يظل عدد الشحنات ثابتاً.
بمعنى أن مجموع الأرقام الذرية للنوى الداخلة في التفاعل = مجموع الأرقام الذرية للنوى الناتجة من التفاعل.
4 ـ قانون بقاء عدد النويات:
في أي تفاعل نووي يظل عدد النويات ثابتاً.
بمعنى أن مجموع أرقام الكتلة للنوى الداخلة في التفاعل = مجموع أرقام الكتلة للنوى الناتجة من التفاعل.

قوانين كبلر
Kepler Laws

يقول نيوتن: إن أعماله وإنجازاته قامت على أكتاف علماء آخرين مثل: تيخو براهي (Thycho Brahe) ويوهانز كبلر (Johannes Kepler) وكانت هذه الأعمال هي الأساس في تحليل نيوتن لحركة الكواكب. وقد وجد تيخو وكبلر أن أعمالها متممة لبعضها بعضاً؛ إذ وجد كبلر أنه بحاجة ماسة لمعطيات تيخو الدقيقة؛ وبالمقابل وجد يتخو أن تحليلات كبلر الرياضية أساسية لعمله، فاستمرت هذه العلاقة بين العالميْن حتى وفاة تيخو. وقام كبلر باستخدام أوراق تيخو وبحوثه التي حصل عليها من مجلس الوصاية. وبسبب ذلك توصل إلى أن مدارات الكواكب حول الشمس لا تكون دائرية بل إهليجليّة (قطوع ناقصة). وتمكن من وضع ثلاثة قوانين للحركة الكوكبية.
لقد توصل كبلر إلى أن الكواكب تدور حول الشمس في مدارات إهلجيلجيَّة، والشمس في إحدى بؤرتي القطع الناقص. وهذا هو القانون الأول لكبلر.
كذلك لاحظ كبلر أن سرعة الكوكب تكون كبيرة كلما كان الكوكب قريباً من الشمس، وتكون صغيرة كلما كان الكوكب بعيداً عن الشمس.
لاستمرار كبلر في بحوثه المتعلقة بحركة الكواكب، توصل بعد مرور عشر سنوات تقريباً إلى أن مربع الزمن الدوري للكوكب يتناسب طردياً مع مكعب متوسط بعده عن الشمس. وهذا هو القانون الثالث لكبلر.

قوانين نيوتن في الحركة

تتحرك الأجسام من حولنا بأنماط حركية مختلفة، فأنت تشاهد سيارة تبدأ حركتها من السكون، وتشاهدها عندما تدور في منعطف أو تتوقف؛ كما أنك تشاهد جسماً مقذوفاً إلى الأعلى فكيف يتحرك في أثناء صعوده وسقوطه؟ وطائرة تطير في الهواء، أو سمكة تسبح في الماء؛ فكيف تتحرك هذه الأجسام؟ وما الذي يحركها؟ هل تتحرك من تلقاء نفسها أم هنالك مؤثرات خارجية تجعلها تتحرك؟ وما العلاقة بين هذه القوى المؤثرة وطبيعة الحركة الناتجة؟ وما القوانين التي تضبط حركة هذه الأجسام؟ هذه الأسئلة وأخرى كثيرة يمكنك الإجابة عنها بعد دراسة قوانين نيوتن في الحركة، هذا مع الانتساب للأهمية الكبرى والدور المهم الذي تمثله بالنسبة لعلم الميكانيكا، واتساع تطبيقها.

قانون نيوتن الأول في الحركة (قانون القصور)

إن الأجسام الساكنة تبقى كذلك ما لم تؤثر فيها قوة خارجية. وهذا ينطبق على الأجسام المتحركة، لأنه إذا كانت الأجسام الساكنة قاصرة عن تغيير حالة سكونها بنفسها، فإن الأجسام المتحركة قاصرة عن تغيير حالتها الحركية بنفسها أيضاً.
إن هذه الصفة في الأجسام التي تجعلها غير قادرة على تغيير حالتها الحركية، هي خاصية طبيعية تسمى خاصية القصور (Inertia). وقد أطلق هذا الأسم أصلاً (غاليلو)؛ ثم أصبح مرادفاً لقانون نيوتن الأول. والقصور لغة تعني العجز؛ أما فيزيائياً فيعني عدم قدرة الجسم على تغيير حالته الحركية مقداراً أو اتجاهاً أو كليهما.
إن الأهمية الكبرى لقانون نيوتن الأول في الحركة تكمن في استخدامه لتعريف القوة. فإذا انعدمت القوة المؤثرة في جسم ما فإن ذلك يؤدي إلى ثبات الحالة الحركية، في حين أن وجود القوة يؤدي إلى تغيير الحالة الحركية. وعلى ذلك فالقوة كل مؤثر خارجي يغيّر أو يحاول التغيير من حالة الجسم الحركية مقداراً أو اتجاهاً، أو كليهما معاً.

قانون نيوتن الثاني في الحركة

إذا أثرت قوة محصلة في جسم أكسبته تسارعاً، يتناسب مقداره تناسباً طردياً مع مقدار القوة المحصلة، ويكون اتجاهه في اتجاه القوة المحصلة نفسها وَيمكن تمثيل هذا القانون رياضياً باستخدام العلاقة التالية:
ق م = ك ت.
حيث
ق م = محصلة القوة المؤثرة في جسم
ك = كتلة الجسم
ت = التسارع الذي هو معدل التغير في السرعة بالنسبة إلى الزمن.
ويكون التسارعُ موجباً (بالنسبة لاتجاه حركة الجسم)، إذا كانت القوة المحصلة باتجاه الحركة فيؤدي إلى زيادة سرعته؛ ويكون سالباً إذا كان اتجاه القوة المحصلة بعكس اتجاه حركة الجسم، تتناقص سرعة الجسم إلى أن يتوقف في النهاية. أي أنه إذا كانت إشارة (ت) مثل إشارة (ع) فالتسارع موجب. وإلا يكون سالباً.
وَإذا كانت القوة المحصلة صفراً، فإن التسارع الذي يكتسبه الجسم = صفراً، وهذا هو قانون نيوتن الأول. وعلى ذلك فإن القانون نيوتن الأول يمكن اعتباره حالة خاصة من قانون نيوتن الثاني؛ أو أن القانونين يمكن اعتبارهما قانوناً واحداً هو قانون نيوتن في الحركة.
ومن قانون نيوتن الثاني يمكن أن نجد طريقة مناسبة لقياس محصلة القوى المؤثرة في جسم معروف الكتلة بحساب تسارعه.
تقاس القوة بوحدة النيوتن، عندما تقاس الكتلة بوحدة (كغ)، والتسارع بوحدة (م/ث2). ويعرف النيوتن بأنه القوة التي إذا أثرت في جسم كتلته (1) كغ، أكسبته تسارعاً باتجاهها مقداره (1) م/ث2.

قانون نيوتن الثالث في الحركة

إن التأثير بقوة في جسم يتطلب تفاعلاً (أي تأثيراً متبادلاً) بين هذا الجسم وجسم آخر. فإذا دفعت جسماً حدث تفاعل بين يدك وذلك الجسم؛ وإذا تعلقت بحبل فهنالك تفاعل بينك وبين الحبل ينشأ عنه قوة تؤثر فيك، وقوة أخرى تؤثر في الحبل.
لكل فعل رد فعل، مساوٍ له في المقدار ومعاكس له في الاتجاه.
إن قوى الجذب المتبادلة سواء بين الأجرام السماوية، أو الجسيمات الأولية هي أيضاً تطبيق لقانون نيوتن الثالث؛ والشمس تجذب الأرض بقوة تجبرها على الدوران حولها، وكذلك النواة تجذب الالكترون وهكذا.

ما وَرَاء الذَّرة

احدى الخصائص التي يتميز بها العلم هي السعي لتفسير مجموعة من الظاهرات المختلفة انطلاقاً من عدد قليل من المفاهيم الاساسية. نظرية جون دالتون (1766 ـ 1844) الذرية هي مثل بارز على ذلك، إذ انها تعتبر أن مواد مختلفة عدة هي مكوّنة جميعها من بعض أنواع الذرة، وان الذرات هي مواد البناء الاساسية لكل ما هو مادي في العالم. في أواخر القرن التاسع عشر واوائل القرن العشرين، تضافرت الدلائل على أن للذرات نفسها بنية داخلية. وبحلول عام 1932، كان العلماء قد تحققوا من أن الذرات هي تجمّعات لجسيمات أصغر منها: البروتونات والنيوترونات (التي تؤلف معا نواة صغيرة مشحونة ايجابا) مع إلكترونات تدور حولها وهي ذات شحنة سالبة.

التفاعلات بين الجسيمات

لا يكفي، لاعطاء وصف كامل للمادة، تعيين مقوّماتها، بل من الضروري أيضاً وصف الطريقة التي تتماسك بها هذه المقوّمات، أي لا بد من وصف الطريقة التي بها تتفاعل هذه فيما بينها. يمكن تمييز أربعة أنواع من التفاعلات: اثنان منها معروفان تماماً، إذ يظهران بسهولة في العناصر المادية العادية. فهناك التفاعل التجاذبي (6) الذي يُحدِث بين الأجسام تجاذباً يتوقف على كتلها، لكن تأثيره ضئيل جداً في تركيب بنية الذرّة ولا يقوم بأي دور في ترابط اجزائها، لكنه مسؤول عن القوّة التي تتجاذب الاجرام السماوية؛ اما التفاعل الكهرطيسي (7) بين الجسيمات المشحونة كهربائياً، فقوته تفوق بملايين الاضعاف التفاعل التجاذبي، وهي مسؤولة عن التجاذب بين نواة الذرة والكتروناتها المدارية. فضلاً عن ذلك، ثمّة تفاعلات مختلفة تماماً تحدث داخل النواة نفسها. هنا تتماسك البروتونات والنيوترونات بشدة رغم التنافر الكهرطيسي بينها. هذا «التفاعل الشديد» لا علاقة له بالشحنة ولا يتأثر بها، لأنه يعمل بين النيوترونات، كما يعمل بين البروتونات، وهو أقوى من التفاعل الكهرطيسي بحوالي 7000 ضعف.
النوع الرابع، المعروف «بالتفاعل الضعيف»، تساوي قوّته حوالي جزء من ألف من قوة التفاعل الكهرطيسي. وهو يظهر في بعض العمليات التي تحدث فيها تحولات لبعض الجسيمات كما في انحلال بيتا الاشعاعي.

مجالات القوة

تحدث الأنواع الأربعة من التفاعلات في الفضاء الحر. تستعمل احدى النظريات لشرح هذا «التأثير من بعيد»، فكرة مجال القوة، القائلة أن الجسيم المشحون يؤثر في الفضاء المحيط به، بحيث إذا وضع جسيم مشحون آخر في هذا الفضاء عينه، فانه يتأثر بدوره بذلك التأثير. تسمّى منطقة التأثير هذه مجالاً كهرطيسياً.
هنالك نموذج تفسير مختلف يعتمد على الميكانيكا الكمية مستعيناً بفكرة تبادل جسيمات مفترضة. فكما يتفاعل جسيمان مشحونان ببثّ الفوتونات (جسيمات الضوء) وامتصاصها، كذلك يفسَّر التفاعل التجاذبي بتبادل جسيمات مفترضة تسمّى غرافيتونات. في عام 1935 رأى هيديكي يوكاوا (8) أن التفاعلات القوية، التي تبقي النواة متماسكة، متأتّية عن تبادل جسيم وكتلة يتمّ بين الالكترون والبروتون. هذا الجسيم معروف الآن باسم باي ميزون (أو بيون) .

جسيمات اساسية أخرى

حتى عام 1932، كان يظن انه يمكن، بثلاثة جسيمات فقط، تفسير البنية الذرية. لكن منذ ذلك الحين، تعقدت الأمور باكتشاف جسيمات عديدة اضافية بفضل دراسة الأشعة الكونية وتجارب استخدمت فيها مسارعات الجسيمات (1، 9) . فقد تبين أن الاصطدامات المرتفعة الطاقة تؤدي إلى توليد جسيمات جديدة عرف منها حتى الآن ما يربو على 200، وأكثرها غير مستقرة (2) .
تصنف هذه الجسيمات تحت الذريّة العديدة في مجموعات: فالجسيمات التي تشترك في التفاعلات الشديدة تسمى هادرونات (ومنها النيوترون والبروتون والهيبرون والميزون)، والجسيمات التي لا تشترك في التفاعلات الشديدة تسمّى لبتونات (ومنها الالكترون والنيوترينو) . لا تزال المشكلة التوصل إلى نظريّة موحّدة تفسر وجود هذه الكثرة من الجسيمات وتصرفاتها.

مجموعات الجسيمات

وزع علماء الفيزياء الجسيمات تحت الذرية إلى ثلاث مجموعات أساسية هي:
وهذه المجموعات الثلاثة هي الجسيمات الأولية, بمعنى أنها لاتبدو مكونة من وحدات أصغر, وأحجامها أدق بكثير من أن يتم قياسها حالياً. فالجسيمات الأولية أدق بمقدار 100 مليون مرة من الذرة.



اللبتونات

اكتشف علماء الفيزياء ستة أنواع من اللبتونات, وهي الإلكترونات, والميونات, والتاوات, إضافة إلى ثلاثة أنواع من اليوترينوات التي ليس لها شحنة كهربائية. أما بقية اللبتونات فلها شحنة سالبة.

الكواركات

لا تشبه الكواركات اللبتونات؛ فهي لا توجد بمفردها في الطبيعة, إنما تتحد دائماً لتكون الجسيمات المعروفة باسم الهدرونات. والهدرونات الثابتة الوحيدة هي البترونات والنيوترونات التي تتكون من مجموعات متحدة من نوعين من الكواركات هي الكواركات الفوقية والكواركات التحتية. وتحمل كل واحدة من هذه الكواركات شحنة كهربائية تساوي ثلث أو ثلثي شحنة الإلكترون. وقد تعرف علماء الفيزياء أيضاً على كواركات غير ثابتة؛ منها الجسيمات الغربية, والمسحورة, والقاعدية, وقد تتحد الكواركات لتكون مايربو على 300 نوع من الهدرونات.

البوزونات

تقوم البوزونات بنقل القوى بين الجسيمات. وتشمل الأنواع المعروفة من البوزونات الفوتونات, والقلونات, والويكونات, أو البوزونات الضعيفة. وتحمل الفوتونات - التي هي في الأصل جسيمات من الضوء - القوة الكهربائية التي تحفظ الإلكترونات داخل الذرة. ويمكن للويكونات أن تغير أي نوع من الكواركات أو اللبتونات إلى نوع آخر.

مصادر الإشعاعات التي تتعرض لها الكائنات الحية والإنسان

ـ العناصر المشعة الموجودة في التربة والصخور.
2 ـ الأشعة الكونية.
3 ـ المفاعلات الذرية ومعجلات القذائف.
4 ـ الغبار الذري الناتج من تفجير القنابل الذرية والهيدروجينية.
5 ـ أجهزة الأشعة السينية المستخدمة في العلاج والكشف.
6 ـ الأجهزة المحتوية على مواد مضيئة دذاتياً مثل الساعات.
7 ـ الكبرون المشع ك، وهو موجود في جميع أجسام الكائنات الحية مع الكربون العادي ك بنسبة 1: 25000 وهو يشع بيتا السالبة.

مقارنة بين التفاعلات الكيميائية والتفاعلات النووية
التفاعلات الكيميائية
التفاعلات النووية

تتبع قانون بقاء الماد
ةتتبع قانون بقاء الطاقة

تتبع قوانين النسب الثابتة والمتضاعفة
لا تتبع هذه القوانين

ينتج عنها طاقة صغيرة
ينتج عنها طاقة هائلة

تتم بانتقال أو مشاركة الإلكترونات بين أغلفة التكافؤ أو بالمساهمة بينها
تتم بين النوى وينتج عنها تكوين نوى عناصر جديدة

تحتاج غالباً لحرارة بسيطة لكي يبدأ التفاعل حتى تتقارب مستويات الطاقة من بعضها فيحدث انتقال الإلكترونات أو المساهمة بينها
يحتاج بعضها لمعجلات القذائف. والتفاعلات الاندماجية تحتاج إلى ملايين الدرجات المئوية ومليارات الضغوط الجوية

نظائر العنصر الواحد تعطي نفس النواتج في التفاعلات الكيميائية
نظائر العنصر الواحد لا تعطي نفس النواتج في التفاعلات النووية

يد+ أ ـ يد 2 أ ماء عادي
لث + يد ـ هـ + هـ + طاقة

2 يد + أ ـ يد 2 أ ماء ثقيل
لث + يد ـ هـ + هـ + ق + طاقة

لا تتغير نوعية العنصر
تتغير نوعية العنصر


مقارنة بين السيكلوترون والبيتاترون من حيث

أ ـ نوع الجسيمات المعجلة ـ ب ـ الاستخدام ـ ج ـ فكرة التعجيل ـ د ـ المجال المغناطيسي ـ هـ ـ السرعة الزاوية ـ و ـ المسار.
السيكلوترون
البيتاترون

أ ـ يستخدم في تعجيل الجسيمات الموجبة الشحنة مثل البروتونات، الديوترونات ودقائق ألفا
أ ـ يستخدم في تعجيل الإلكترونات

ب ـ تستخدم الجسيمات الموجبة المعجلة كقذائف في التفاعلات النووية
ب ـ توجه الإلكترونات المعجلة نحو سلك من البلاتين فتصطدم به فتولد أشعة سينية ذات طاقة عالية تستخدم في التفاعلات النووية

ج ـ تعتمد فكرة التعجيل على تغير اتجاه المجال الكهربي في الفجوة بين (د 1، د 2) . فعندما يعبر الجسيم الفجوة يتم تعجيله فتزداد سرعته. وبتكرار تغير اتجاه المجال يكتسب الجسيم طاقة إضافية كلما عبر الفجوة، حتى تصل طاقته إلى أقصاها في نهاية مساره، ثم يوجه نحو الهدف لإحداث التفاعل النووي
ج ـ تعتمد فكرة التعجيل على تغير شدة المجال المغناطيسي المتردد. حيث تزداد شدته تدريجياً من صفر إلى نهاية عظمى في الربع الأول من ذبذبة التيار أي في زمن قدره 1/240 من الثانية، وفي هذه الفترة تكتسب الإلكترونات سرعة وطاقة متزايدة تصل إلى أقصاها في نهاية هذه الفترة الزمنية. وعندما توجه نحو سلك البلاتين لتصطدم به فتتولد الأشعة السينية ذات طاقة عالية

د ـ المجال المغناطيسي المستخدم يكون موحد الاتجاه والشدة
د ـ المجال المغناطيسي متردد متغير الشدة والاتجاه

هـ ـ السرعة الزاوية للجسيمات المعجلة ثابتة لا تعتمد على (ع أو س)
هـ ـ السرعة الزاوية للإلكترونات المعجلة متزايدة تتناسب طردياً مع السرعة الخطية (ع)

و ـ تتحرك الجسيمات المعجلة في مسار حلزوني
و ـ تتحرك الإلكترونات المعجلة في مسار دائري


وجه المقارنة القنبلة الذرية القنبلة الهيدروجينيةفكرة العمل تعتمد على إحداث تفاعل انشطاري في وقت قصير تعتمد على إحداث تفاعل اندماجي بين نظائر الهيدروجين باستخدام تفاعل انشطاري متسلسل
نوع التفاعل النووي تفاعل انشطاري متسلسل تفاعل اندماجي
القنبلة الذرية القنبلة الهيدروجينية
وقودها اليورانيوم 235 أو البلوتونيوم وقودها نظائر الهيدروجين وقد يضاف إليها نظير الليثيوم لث وتحاط نظائر الهيدروجين والقنبلة الذرية بغلاف من اليورانيوم 238
وقودها محدد بحجم حرج وقودها غير محدد بحجم معين
تستخدم فيها مواد عاكسة للنيوترونات لا تستخدم فيها مواد عاكسة للنيوترونات
قوتها التدميرية أقل 1000 مرة من القنبلة الهيدروجينية قوتها التدميرية أكبر 1000 مرة من قوة القنبلة الذرية


ميكانيكا الكم

ميدانٌ من ميادين علم الفيزياء، يصف تركيب الذرّة وحركة الجسيمات الذرية، ويوضح كذلك كيف تمتص الذرات الطاقة في شكل ضوء، وكيف تطلقها، ويوضح طبيعة الضوء.
تمضي ميكانيكا الكم إلى ما يتجاوز الحدود القصوى للفيزياء التقليدية، التي تقوم على أساس القوانين التي صاغها العالم الإنجليزي السير إسحق نيوتن. وهي تُعد من المُنجَزَات العلمية الكبرى التي تحققت في القرن العشرين. وبالإضافة إلى أهميتها النظرية، فقد ساهمت في تطوير أجهزة عملية مثل أجهزة الليزر والترانزستور، كما مكنت العلماء من تحقيق فهم أفضل للروابط والتفاعلات الكيميائية.
فهم ميكانيكا الكم: تتحرك في الذرة جسيماتٌ صغيرةٌ ذاتُ شحنة كهربائية سالبة. ويُطلق على هذه الجسيمات الإلكترونات وتتحرك في مدارات حول نواة ذات شحنة موجبة. وتوضح ميكانيكا الكم أن الإلكترونات لا يمكنها التحرك إلا في مدارات بعينها، وكلّ مدار يدعى المدر المُكمَّى وله قيمة معينة من الطاقة. وعندما يكون إلكترون ما في مدار محدد فإنه يوجد في مستوى بعينه من مستويات الطاقة، ولا يطلق الطاقة أو يمتصها. ويظل الإلكترون في هذه الحالة العادية، طالما أن ذرته على حالها، ولكن إذا ما أثرت قوى جارجية على هذه الذرة، فإن الإلكترون يمكن أن يتغير متنقلاً إلى مدار مكمّى آخر.
وعندما يقفز الإلكترون من مدار ذي طاقة أعلى إلى مدار ذي طاقة أقل، فإنه يطلق الطاقة على شكل ضوء، وهذا الضوء يُطلق في صورة حزمة صغيرة من الطاقة تدعى كوانتم أو فوتون. وتساوي طاقة الفوتون هذه الفرق في الطاقة بين المدارين اللذين حدث القفز من أحدهما إلى الآخر. والإلكترون يمكنه كذلك أن يمتص فوتوناً، ويقفز من مدار ذي طاقة أدنى إلى مدار ذي طاقة أعلى. وبهذه الطريقة فإن ميكانيكا الكم توضح العملية التي من خلالها تُطلق الذرة فوتونات الضوء وتمتصها.
كان العلماء في السابق يعتقدون أن الضوء موجةٌ تنبعث على شكل دفق متواصل، ولكننا الآن نعرف أن للضوء خواصّ كل من الجسيمات (الفوتونات) والموجات. وللفوتون طاقة تتناسب مع تردد الموجات؛ أي مع عدد الذبذبات في الثانية.
وتوضح ميكانيكا الكم إن الإلكترونات وغيرها من الجسيمات الذرية للمادة مرتبطة بالموجات كذلك. وهذه الموجات التي تسمى موجات المادة لها أطوال موجبة محددة. والطول الموجي يتناسب في كل الأحوال مع تردد الموجات ومع كمية حركة الجسيمات. وهذه الكمية تُحسب بضرب كتلة الجسيمات في سرعتها. وتقدم موجات المادة تفسيراً لترتيب الإلكترونات في مدارات منفصلة.

نظرية بوهر للتفاعل النووي

تفسر هذه النظرية مراحل التفاعل النووي وتتلخص فيما يأتي:
1 ـ عند قذف نواة الهدف بقذيفة فإنها تمتص القذيفة ويتكون نواة مركبة نواة الهدف + قذيفة ـ نواة مركبة 2 ـ تتوزع طاقة القذيفة على نويات النواة بالتساوي فترتفع درجة حرارتها إلى ملايين الدرجات المئوية فتتصادم النويات وفي النهاية يتركز جزء كبير من الطاقة الإضافية على إحدى النويات فتتغلب على القوى النووية وتنفصل عن النواة.
نواة مركبة ـ نواة نهائية + قذيفة أو قذائف مطرودة 3 ـ النواة المركبة تشبه قطرة سائل ارتفعت درجة حرارتها فتبخر بعض جزيئاتها. فالنواة المركبة يتبخر بعض نوياتها والنوية المتبخرة قد تكون بروتوناً أو نيوتروناً أو بروتوناً مع نيوترون (ديترون) أو 2 بروتون مع 2 نيوترون (دقيقة ألفا) .
4 ـ إذا كانت القذيفة طاقتها ضعيفة وغير قادرة على تبخير إحدى النويات تأسرها النواة وتصبح نواة نهائية وتخرج منها طاقة القذيفة على هيئة فوتونات جاما.

علاقات بين الوحدات

رد مع اقتباس